
Stephen Checkoway

Programming Abstractions
Lecture 10: Fold left



Review: map
Applies a procedure to each element of a list

! and " are types


(map proc lst)


‣ proc : ! ! "

‣ lst : list of !


‣ map returns list of "

E.g.,


‣ ! = number, " = integer  

(map floor '(1.3 2.8 -8.5))



Review: apply
Applies a procedure the arguments in a list

(apply proc lst)


‣ proc : !1 × !2 × ⋯ × !n ! "

‣ lst : (!1 !2 … !n)


‣ apply returns "

E.g.,


‣ !1 = number, !2 = boolean, " = number  

(apply (λ (n b) (if b (- n) n))  

       '(5 #t))



Review: fold right
Folds let us combine all elements of a list

(foldr combine initial lst)


‣ combine : ! × " ! "

‣ initial : "

‣ lst : list of !

‣ foldr returns "

E.g., ! = string and " = number  

(foldl (λ (str num) (+ num (string-length str)))  

       0  

       '("red" "green" "blue"))



Shapes

Racket library 2htdp/image has procedures for creating images


(require 2htdp/image)


(circle 20 'solid 'red) => 


(rectangle 50 20 'outline 'blue) => 
radius

width height



If we have a list of radii, say lst is '(20 30 50 60) and we want a list of 

solid, red circles with those radii, which should we use? 

 

(____ lst) => (list                )     

A. (map circle 'solid 'red lst)

B. (map (λ (r) (circle r 'solid 'red)) lst)

C. (apply circle 'solid 'red lst)

D. (apply (λ (r) (circle r 'solid 'red)) lst)

E. (foldr (λ (r) (circle r 'solid 'red)) empty lst)

6



Combining images

(empty-scene 320 180) gives a white rectangle with a black border we can 

draw on


(place-image img x y scene) returns a new image by starting with 

scene and drawing img at (x, y)


(let* ([c (circle 40 'solid 'blue)]

       [r (rectangle 200 30 'solid 'red)]

       [s0 (empty-scene 320 180)]

       [s1 (place-image c 50 90 s0)]

       [s2 (place-image r 150 90 s1)]

       [s3 (place-image c 180 70 s2)])

  s3)



Imagine we have a list of 3-element lists (shape x y), e.g., lst is the list 

(list (list (circle 40 'solid 'blue) 50 90)  

      (list (rectangle 200 30 'solid 'red) 150 90)  

      (list (circle 40 'solid 'purple) 180 70))

How would you draw those shapes on a scene at their coordinates?

A. (map (λ (i) (place-image (first i) (second i) (third i) scene))  

     lst)

B. (apply (λ (i) (place-image (first i) (second i) (third i) scene))  

       lst)

C. (foldr (λ (i s) (place-image (first i) (second i) (third i) s))  

       scene  

       lst)

8



(define lst

  (list (list (circle 40 'solid 'blue) 50 90)

        (list (rectangle 200 30 'solid 'red) 150 90)

        (list (circle 40 'solid 'purple) 180 70)))

(foldr (λ (i s) (place-image (first i) (second i) (third i) s))

       (empty-scene 320 180)

       lst)

Which image is drawn by this code?

A.  

 

B.  

 

C. There's not enough information 

to know 

9



Accumulation-passing style similarities

(define (product-a lst acc)  

  (cond [(empty? lst) acc]  

        [else (product-a (rest lst)  

                         (* (first lst) acc))]))

(define (product lst)  

  (product-a lst 1))



Accumulation-passing style similarities

(define (reverse-a lst acc)  

  (cond [(empty? lst) acc]  

        [else (reverse-a (rest lst)  

                         (cons (first lst) acc))]))

(define (reverse lst)  

  (reverse-a lst empty))



Accumulation-passing style similarities

(define (map-a lst acc)  

  (cond [(empty? lst) acc]  

        [else (map-a (rest lst)  

                     (cons (proc (first lst)) acc))]))


(define (map proc lst)  

  (reverse (map-a lst empty)))



Some similarities

Basic structure is the same (rewriting slightly)  

(define (fun-a lst acc)  

  (cond [(empty? lst) acc]  

        [else  

         (fun-a (rest lst)  

                (combine (first lst) acc))]))  

(define (fun … lst)  

  (fun-a lst initial-val))

Function initial-val (combine head acc)

product 1 (* head acc)

reverse empty (cons head acc)

map empty (cons (proc head) acc)

We must reverse the result



Abstraction foldl
(foldl combine initial-val lst)

cons

1 cons

2 cons

3 cons

4 cons

5 '()

combine

5 combine

4 combine

3 combine

2 combine

1 initial-val



product as fold left
(foldl combine initial-val lst)

(define (product lst)  

  (foldl * 1 lst))

cons

1 cons

2 cons

3 cons

4 cons

5 '()

*

5 *

4 *

3 *

2 *

1 1



reverse as fold left
(foldl combine base-case lst)

(define (reverse lst)  

  (foldl cons empty lst))

cons

1 cons

2 cons

3 cons

4 cons

5 '()

cons

5 cons

4 cons

3 cons

2 cons

1 '()



map as fold left
(foldl combine initial-val lst)

(define (map f lst)  

  (reverse (foldl (λ (head acc)  

                    (cons (f head) acc))  

                  empty  

                  lst)))

cons

1 cons

2 cons

3 cons

4 cons

5 '()

λ

5 λ

4 λ

3 λ

2 λ

1 '()

cons

(f 1)cons

(f 2)cons

(f 3 cons

(f 4)cons

(f 5)'()



Both folds

cons

1 cons

2 cons

3 cons

4 cons

5 '()

f

1 f

2 f

3 f

4 f

5 base

cons

1 cons

2 cons

3 cons

4 cons

5 '()

f

5 f

4 f

3 f

2 f

1 init

foldl foldr



Let's write foldl
(foldl combine initial-val lst)

cons

1 cons

2 cons

3 cons

4 cons

5 '()

combine

5 combine

4 combine

3 combine

2 combine

1 initial-val



Which is tail-recursive?


(define (foldr combine base lst)

  (cond [(empty? lst) base]

        [else (combine (first lst)

                       (foldr combine base (rest lst)))]))

(define (foldl combine initial-val lst)

  (cond [(empty? lst) initial-val]

        [else (foldl combine

                     (combine (first lst) initial-val)

                     (rest lst))]))

A. foldl


B. foldr


C. Both foldl and foldr


D. Neither foldl nor foldr

20


